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a b s t r a c t 

In the wake of a disaster, people from nearby areas often converge to assist the affected community. 

Spontaneous volunteers are not affiliated with relief agencies but are in a unique position to provide 

invaluable aid at a crucial point in the disaster cycle. Often, these volunteers are ineffectively used or 

refused altogether. Volunteer Reception Centers (VRCs) can benefit from improved strategies to integrate 

the influx of spontaneous volunteers. In this paper, a multi-server queuing model is formulated to repre- 

sent the dynamics of assigning spontaneous volunteers to tasks in a post-disaster setting. In particular, we 

consider the case of stochastic arrival of demand for service and stochastic arrival of volunteers, whose 

time in service is also stochastic. These assumptions mimic disaster relief tasks such as distribution of 

relief items, where both beneficiaries and volunteers arrive randomly. An optimal policy for assigning 

volunteers to tasks is generated using a Markov Decision Process. We then use simulation to compare 

the optimal policy against several heuristic policies and discuss real world implications. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

During and after major disasters, large numbers of people un-

ffiliated with traditional emergency response organizations con-

erge on the scene to offer assistance [1] . Motivated by the de-

ire to do something for those in need, these individuals respond

n impulse immediately following disaster events and are referred

o as spontaneous volunteers [2] . Spontaneous offers to help during

nd following disasters are well documented, and are strongly in-

uenced by the amount of media coverage an event receives [3] .

or example, Lowe and Fothergill [2] report that 15,0 0 0 volun-

eers helped during the two-and-a-half week period following the

eptember 11 attacks in New York City. The response to Hurricane

atrina in 2005 attracted 60,000 volunteers to New Orleans [4] . 

Research shows that spontaneous volunteers are capable of

ositively contributing to relief effort s during the aftermath of

isasters by performing a variety of services, including search

nd rescue, distribution of relief items, and the assessment of

ommunity needs [5] . While spontaneous volunteers can be a

aluable resource, they are often ineffectively used and can poten-

ially hinder emergency operations by creating health, safety, and
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ecurity concerns. Furthermore, spontaneous volunteers require

upervision, which can distract professional responders from their

uties that directly serve disaster survivors [1] . Oftentimes, the

ervices of spontaneous volunteers are refused purely because

olunteer organizations are ill-equipped to manage them. A survey

f non-governmental voluntary organizations (NVOs) found that

he use of spontaneous volunteers is widespread, but NVOs are not

ecessarily structured to effectively engage them [44] . Improved

trategies for incorporating spontaneous volunteers into organized

elief efforts are needed in order to achieve safe and responsive

isaster management [1] . 

In this paper, we consider the problem of assigning sponta-

eous volunteers arriving at a Volunteer Reception Center (VRC)

o multiple disaster relief tasks. Such volunteers are commonly

tilized to sort donations and distribute relief supplies (e.g. food,

lothing, clean-up kits). One characteristic that distinguishes

pontaneous volunteer assignment from all other forms of labor

cheduling is that spontaneous volunteers randomly join and

bandon the operation [6] . As such, we represent the spontaneous

olunteer assignment problem as a multi-server parallel queuing

ystem where the servers (spontaneous volunteers) randomly

rrive and depart the system. Within this framework, optimal

olicies for assigning spontaneous volunteers to tasks are derived

rom a continuous time Markov Decision Process (MDP) model. In

ddition, we evaluate a variety of experimental cases in a discrete-

vent simulation model in order to examine the performance
igning spontaneous volunteers to relief effort s under uncert ainty 
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of heuristic assignment policies relative to the optimal policy.

We identify an effective assignment policy that is also easy to

implement, and provide insights for individuals who may be in

charge of managing spontaneous volunteers in real-world disaster

response environments. 

The remainder of this paper is organized as follows. In

Section 2 , we review academic literature related to disaster opera-

tions management, volunteer scheduling, and server assignment in

queuing theory. In Section 3 , we formulate the spontaneous volun-

teer assignment problem as a Markov Decision Process (MDP), and

discuss sufficient conditions for the existence of steady-state solu-

tions. In Section 4 , we introduce and describe practical heuristic

policies to be tested against the MDP policy. Section 5 provides a

brief overview of the simulation model used to compare the per-

formance of the MDP and heuristic policies. Section 6 details the

experimental analysis generated for the simulation study and the

results. Concluding remarks and implications for volunteer man-

agers are provided in Section 7 . 

2. Literature review 

This study is related to three areas: (1) disaster operations man-

agement, (2) volunteer scheduling, and (3) server assignment in

queuing systems. 

2.1. Disaster operations management 

The disaster operations management (DOM) literature has ex-

perienced rapid growth since the year 2001. For example, Gupta et

al. [7] surveyed 268 papers from among 25 Operations Research /

Management Science (OR/MS) journals and reported an increase in

the annual publication rate of 2.67 in 2001 to 33.67 in 2014 (these

results are based on a three-year moving average). It is safe to say

that DOM is a mainstream application area of OR/MS based on

the numerous survey papers dedicated to the subject (e.g. [8–10] ).

Moreover, multiple focus areas with critical mass have emerged

from DOM literature, and review papers dedicated to these sub-

jects have also been published. The most prevalent DOM topics

include: inventory management [11] , facility location [12] , and re-

lief distribution [13] . Manpower planning, however, is another im-

portant topic within the context of DOM that has received very

limited attention from an academic perspective [14,15] . Fritz and

Mathewson [16] first defined the mass movement of people and

supplies to the affected area as volunteer and material convergence

respectively. Volunteer Management focuses on managing these

volunteer resources through the entire process. Volunteer manage-

ment plans cover the engagement, recruitment, placement, orien-

tation, training, supervision, recognition, and evaluation of volun-

teers. Many software solutions exist (e.g. volgistics, EveryAction,

MobileServe, etc.) to help volunteer managers track and schedule

registered volunteers. These software solutions are also useful af-

ter disasters due to their reporting and database capabilities. How-

ever, they do not necessarily assist with the immediate assignment

of incoming spontaneous volunteers following a natural disaster.

Many of the current management practices related to SV, as high-

lighted by FEMA [17] and Red Cross [18] , focus on strategic guide-

lines. Where operational guidelines do exist, they fail to elaborate

on key points. For example, one of FEMA’s concepts of operation

suggests volunteer managers should “Refer unaffiliated volunteers

to appropriate response agencies after initial screening” [17] . How-

ever, the referral is left to the best judgement of the volunteer

manager on duty at the volunteer reception center (VRC) or volun-

teer site. The manager must interpret the meaning of appropriate

as it relates to the situation, using their best judgement and expe-

rience. Prioritizing the tasks of SVs is considered to be one of the

major challenges for volunteer managers during disaster response
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass

in task demand and volunteer availability, Omega, https://doi.org/10.10
19] . This paper addresses a known gap in the DOM literature by

onsidering the problem of assignment/placement for spontaneous

olunteers after disaster events from an operational perspective. 

.2. Volunteer scheduling 

While traditional workforce scheduling problems have been

tudied extensively (e.g. [20] ), there has been much less work that

ocuses on labor assignment from a DOM perspective. One of the

ost impactful distinctions between traditional and DOM man-

ower planning is the role of volunteer labor. In particular, vol-

nteers complete a significant portion of the tasks performed dur-

ng the early phases of disaster response [5] . The labor in classi-

al personnel scheduling is supported by a paid workforce, which

ends to be more stable and predictable compared to volunteer la-

or [21] . Falasca and Zobel [22] identify several operational charac-

eristics that are unique to volunteer planning and scheduling for

isaster relief purposes that ought to be considered from an OR/MS

odeling perspective. One such characteristic is the importance

f satisfying volunteers’ preferences, including the type of work,

he times they want to work, how long they are willing to work,

nd with whom they prefer to work (volunteers often contribute

o relief efforts in groups, e.g., churches, sports teams, families).

he issue of prioritizing volunteer preferences applies to volun-

eer scheduling in general (e.g. [21] ), not just volunteer scheduling

or disaster relief. However, manpower planning for DOM may also

equire assigning volunteers across geographically dispersed loca-

ions, which for the most part, is irrelevant when it comes to la-

or scheduling in non-DOM contexts. Falasca and Zobel [22] incor-

orate the above features into a bi-objective optimization model

hat seeks to balance the conflicting objectives of minimizing un-

et task demands and maximizing volunteer preferences. Lassiter

t al. [23] also take unmet task demands and volunteer preferences

nto account within the context of humanitarian relief, but extend

alasca and Zobel’s deterministic model in an important way: they

onsider task uncertainty and propose a robust optimization model

o handle this uncertainty. 

In both Falasca and Zobel [22] and Lassiter et al. [23] , there is

o uncertainty associated with labor capacity or capabilities. How-

ver, empirical studies have demonstrated that spontaneous vol-

nteerism is characterized by various forms of uncertainty, such as

he times between volunteer arrivals, the amount of time volun-

eers contribute the relief efforts on a given day, and the sizes of

olunteer groups who arrive and depart the relief effort together

6] . From this perspective, we view the studies by Falasca and Zo-

el [22] and Lassiter et al. [23] as appropriate for scheduling affil-

ated volunteers where an uncertain labor pool is significantly less

f an issue. However, assignment decisions that pertain to spon-

aneous volunteers, the volunteer type we focus on in this pa-

er, require a different approach. Mayorga et al. [24] , which is the

tudy that is closest to ours, proposes a framework that captures

he unique characteristics of spontaneous volunteers, namely un-

ertainty in volunteer arrival and departure times. Specifically, they

odel the spontaneous volunteer assignment problem as a paral-

el queuing system with random server (i.e., volunteer) arrivals and

bandonments, in which a deterministic amount of work known

 priori is to be completed. The control problem is formulated as

 MDP, and a policy iteration algorithm is used to generate op-

imal policies for problem instances. Mayorga et al. [24] also con-

uct a computational experiment in which the performance of sev-

ral practical heuristic policies are examined through simulation,

nd they find that simply assigning volunteers to the queue with

ewest volunteers generally works well as an assignment policy.

his paper generalizes the deterministic demand model by consid-

ring stochastic demand streams, allowing for the representation

f more complex disaster relief tasks. By doing so, we now have
igning spontaneous volunteers to relief effort s under uncert ainty 
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Fig. 1. Pictorial representation of the system. 
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o contend with deriving an appropriate stability condition for the

ueuing system (done in Section 3.1 ), which was not necessary for

he deterministic demand case described above. 

In summary, we have identified only three papers in the aca-

emic DOM literature that address manpower planning for disaster

elief from an operational perspective: [22–24] . Furthermore, only

ne of the three considers random volunteer arrival and abandon-

ent processes [24] , and is therefore relevant to the spontaneous

olunteer assignment problem. We conclude our discussion here

y noting that volunteer scheduling literature has occurred in con-

exts other than DOM. A general framework for volunteer schedul-

ng is laid out by Sampson [21] , and he applies that framework to

he problem of scheduling reviewer assignments for an academic

onference. Other settings in which volunteer labor assignment re-

earch has been applied are an annual music festival [25] and a

ike sharing program [26] . However, these applications do not con-

ider labor uncertainty. 

.3. Queuing theory 

Optimal control of queues via server assignment is a widely

tudied class of problems in queuing theory with numerous varia-

ions. As such, a comprehensive review of this literature is beyond

he scope of our discussion here. Instead, we review a few repre-

entative studies that focus on the control of parallel queuing sys-

ems, and we also highlight related areas of the queuing literature.

 basic framework for server assignment in parallel queuing sys-

ems involves multiple customer classes, where each queue is ded-

cated to serving a specific class. The control problem entails dy-

amically allocating a fixed pool of heterogeneous servers among

he queues with the goal of minimizing waiting time. Squillante

t al. [27] , for example, consider this problem under the assump-

ion of Poisson arrivals and exponential service times, and pro-

ose threshold-based priority policies related to the well-known

 μ rule. 

Variations of the c μ policy have since been applied to many

ifferent queuing systems. For example, a generalized version of

he c μ rule is optimal when holding costs are nonlinear, but con-

ex [28] . More recently, Cao et al. [29] derived conditions under

hich the c μ policy is optimal for a single server queuing network

ith two customer classes, where customers from the lower class

re upgraded to the higher class after a random amount of time.

here are also some cases where the optimality of c μ is preserved

or parallel queuing systems with multiple servers. Consider, for in-

tance, the N-network that consists of two types of customers and

ervers; a dedicated server that can serve one customer type, and a

ully flexible server that is capable of serving both customer types.

ell et al. [30] and Saghafian et al. [31] prove that the c μ rule is

ptimal under certain conditions in this setting, while Down et al.

32] extend the result to an N-Network with multiple servers of

ach type (dedicated and fully flexible) and customer upgrades. 

All of the above-mentioned studies involve the assignment of

 fixed pool of servers where, as is the case in most papers, ser-

ice rate is the only stochastic characteristic of the servers. How-

ver, the present study considers server assignment policies where

ot only service rates, but also server availability, are stochas-

ic. Besides Mayorga et al. [24] , only a limited number of papers

eal with optimal control of queues in the presence of unreliable

ervers; and to our knowledge, only two do so within the con-

ext of assigning servers to parallel queues: [31,33] . Both of these

apers derive optimal policies for assigning unreliable servers to

ueues involving multiple customer classes, where servers are un-

eliable in the sense that they fail at random points in time and

emain unavailable for random periods until they are repaired.

aghafian et al. [31] establish conditions under which a version of

he c μ rule is optimal for a generalization of the N-network that
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass
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as three servers (instead of two): one dedicated, one fully flexi-

le, and one partially flexible (the authors refer to this extension

s the W-network). Andradóttir et al. [33] , on the other hand, in-

estigate the prospect of using flexible servers to compensate for

erver unreliability under the long-run average throughput objec-

ive. Andradóttir et al. [34] also consider the throughput objective,

ut within the context of a tandem (not parallel) queuing system.

u et al. [35] and Wu et al. [36] also examine the assignment

f unreliable servers in a tandem system, but with the objective

f minimizing longrun average holding costs. The remaining pa-

ers that address the control of queues with unreliable servers do

o by routing customers [37,38] or designing server repair policies

39,40] as opposed to server assignment policies. The present work

iffers from these in very fundamental ways in terms of the how

erver unreliability is represented. First, we consider servers who

rrive randomly over time from an infinite population of sponta-

eous volunteers. This is unlike the queuing systems mentioned

bove where the pool of servers is fixed and finite. Additionally,

fter remaining in the system for random amounts of time, all vol-

nteers eventually abandon the system forever. They do not re-

urn after random periods of inactivity due to repair as in previous

tudies. 

. Model development 

To model this problem, we consider a queuing system where

ach queue i, (i = 1 , . . . , N) , represents a different job or task that

olunteers may be assigned to work on, as shown in Fig. 1 . Sponta-

eous volunteers arrive to the system according to a Poisson pro-

ess with rate λ. As identified in the literature, it has been shown

hat there is typically an abundance of volunteers following a dis-

ster (e.g. [2–4] ), effectively representing an infinite population of

otential servers. It is assumed that the volunteer manager is im-

ediately able to assign volunteers to available queues accord-

ng to a specified control policy. Available queues are all queues

ot currently at maximum volunteer capacity. Volunteer capacity

efers to the number of volunteers that can actively contribute to

he relief effort s, which could be due to resource requirements

e.g. carts to transport items), limited space (e.g. a gymnasium be-

ng used as a distribution center), or safety concerns. Volunteers’

imes in system until abandonment are exponentially distributed

ith mean 1/ γ . Work, or demand for services (e.g. request for re-

ief items, or donations to be sorted) arrives to each queue sepa-

ately, according to a Poisson process with rate α . 
i 

igning spontaneous volunteers to relief effort s under uncert ainty 

16/j.omega.2020.102228 

https://doi.org/10.1016/j.omega.2020.102228


4 K.E. Paret, M.E. Mayorga and E.J. Lodree / Omega xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: OME [m5G; February 27, 2020;16:4 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

p  

T  

u

E  

 

f  

o  

s  

s

α  

 

b  

u  

a  

s  

t  

o  

i

3

 

n  

m  

s  

i  

i  

t  

i  

v  

a  

a  

�

 

e  

J  

l

J

 

 

c  

t  

T  

f  

t  

w  

m  
The number of volunteers working in queue i can be repre-

sented as v i , with the maximum volunteer capacity represented

as V i . Work is completed at each queue according to an exponen-

tial additive service rate of v i μi ; that is, volunteers are assumed to

work on a single task collaboratively. The work or demand for ser-

vices at each queue i is represented by d i . The holding cost per unit

time for a job of type i is represented as h i , which for the purposes

of this study does not necessarily reflect the inventory holding cost

to the relief organization. Alternatively, h i can be thought of as a

representation of the relative importance of specific goods or ser-

vices during disaster response. For example, consider two tasks

related to material convergence: (1) offloading truckloads of do-

nations and (2) sorting/organizing donations. We expect volunteer

managers to assign importance such that h 1 > > h 2 in most cases.

It is assumed that if all queues reach the maximum allowable ca-

pacity, volunteers will be turned away from the reception center

or directed to another relief organization. Demand may continue

to accumulate without being bounded. If demand reaches zero at

a queue, volunteers remain idle or participate in ancillary tasks,

such as cleaning up the work area, while they wait for additional

work to arrive. Immediate reassignment of spontaneous volunteers

is not considered. 

We can define the feasible state space of the system

described above as S = { v , d | v i ∈ (0 , · · · , V i ) , d i ∈ (0 , · · · , ∞ ) , i =
1 . . . N} . The state of the system at time t can be defined

by ( v (t) , d (t)) , where v (t) = { v 1 (t) , v 2 (t) , . . . , v N (t) } and d (t) =
{ d 1 (t) , d 2 (t ) , . . . , d N (t ) } where v i ( t ) and d i ( t ) refer to the number

of volunteers working and the number of unfinished units of work

remaining at queue i at time t respectively. Feasible volunteer al-

locations include all queues where v i < V i . As described above, the

state transitions are all Markovian and therefore this system can be

formulated as a continuous time Markov decision process (MDP).

The transition rates of the process are state and action dependent.

Conditions to ensure stability of this system are provided in the

following section. 

3.1. Stability 

In this section we derive conditions to guarantee that an as-

signment policy exists which maintains system stability for a set

of input parameters, i.e. that a steady-state solution can be found

( E [ d i ] < ∞ as t → ∞ ). While the overall system is complex, we can

break the model down into subsystems to more easily derive sta-

bility conditions. First, consider a random routing policy that thins

the volunteer arrival rate into N independent arrival streams with

probability p i = 1 /N, where 
∑ 

i p i = 1 . The result is N subsystems,

each with a volunteer arrival rate λp i . The demand at each of the N

queues can be represented as an M/M/1 queue with Markov mod-

ulated service rates. The Markov modulated service rates are de-

termined by an underlying Birth Death (BD) process representing

the number of volunteers. Births occur according to the rate volun-

teers arrive to the queue, λp i , and deaths occur according to vol-

unteer abandonment, v i γ . The expected number of volunteers in

each queue is independent of the amount of work in that queue

for this policy. 

Taking a closer look at the demand process, it has been shown

by Queija [41] that for M/M/1 queues with Markov Modulated ser-

vice rates that follow a BD process, the system is stable if and only

if: 

αi < 

V i ∑ 

i =0 

πi v i μi (1)

where π i in Eq. (1) is the steady state probability of being in state

i of the BD system, which represents the number of volunteers in

queue i . Eq. (1) can be rewritten as αi < μi E [ v i ] . That is, the ar-

rival rate must be less than the average service rate to maintain
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass
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tability. Given that the volunteer process in queue i is a finite BD

rocess, we can solve for E [ v i ] using known BD stability equations.

he queue intensity ρ i in Eq. (2) is represented as ρi = 

λp i 
γ for vol-

nteers in subsystem i . 

 [ v i ] = 

V i ∑ 

n =0 

πi n = 

V i ∑ 

n =0 

ρn 
i 

n 

n ! 

1 ∑ V i 
n =0 

ρn 
i 

n ! 

= ρi 

⎛ 

⎜ ⎜ ⎝ 

1 −
ρV i 

i 

V i ! ∑ V i 
n =0 

ρn 
i 

n ! 

⎞ 

⎟ ⎟ ⎠ 

(2)

For the whole system to maintain stability in steady state, it

ollows that each subsystem must satisfy αi < μi E [ v i ] . Given a set

f input parameters ( λ, α, μ, γ , V ) and a random thinning policy

uch as the one discussed above, we meet sufficient conditions for

ystem stability if: 

i < μi ρi 

⎛ 

⎜ ⎜ ⎝ 

1 −
ρV i 

i 

V i ! ∑ V i 
n =0 

ρn 
i 

n ! 

⎞ 

⎟ ⎟ ⎠ 

for i = 1 , . . . , N (3)

Essentially, the expected service rate for each relief task must

e fast enough to keep up with task arrival rates for a given vol-

nteer assignment policy. If the sufficient conditions for stability

re met, we have identified an assignment policy that maintains

ystem stability. Thus, an optimal assignment policy is also guaran-

eed to result in a stable system. We discuss the process of devel-

ping an optimal assignment policy for a set of input parameters

n the next section. 

.2. Optimal policy 

Given a stable system with a feasible assignment policy, we

ext find the optimal assignment solution. The objective is to mini-

ize the long-run average holding cost of the system. We note that

olutions to steady state problems tend to be simpler and easier to

mplement than finite horizon or non-stationary solutions, which

s beneficial in the case of relief effort s. Additionally, note that even

hough the true arrival rate ( λ) is likely to be time varying, analyz-

ng steady state models can indeed be helpful and tend to pro-

ide conservative results [42] . To find the optimal policy, we solve

n equivalent discrete time problem by employing uniformization,

s detailed in [43] . We define the maximum transition rate as:

= λ + 

∑ N 
i =1 ( αi + V i u i + V i γi ) . 

Next, we define the recursive optimality equation (Bellman

quation) for the discrete-time equivalent finite horizon problem,

 k ( v, d ), as the value of being in state ( v, d ) with k < K periods

eft-to-go out of K , and J 0 represents the terminal cost. 

 k ( v , d ) = 

1 

�

{ 

N ∑ 

i =1 

h i d i + λ min (R i J k −1 (v , d )) + 

N ∑ 

i =1 

αi J k −1 (v , d + e i ) 

+ 

N ∑ 

i =1 

μi v i C i J k −1 (v , d ) + 

N ∑ 

i =1 

γi v i J k −1 (v − e i , d ) 

+ 

[ 

� − λ −
N ∑ 

i =1 

( αi + μi v i + γ v i ) 

] 

J k −1 (v , d ) 

} 

(4)

The first summation in Eq. (4) corresponds to the total holding

ost incurred at each queue. The second term denotes the alloca-

ion decision for the next arrival given that we are in state ( v,d ).

he third term accounts for the arrival of work to each queue. The

ourth term accounts for the completion of units of work, where

he completion rate is proportional to the number of volunteers

orking at that queue. The fifth term accounts for the abandon-

ent of volunteers proportional to the number working at each
igning spontaneous volunteers to relief effort s under uncert ainty 
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Fig. 2. Optimal Policy Assignments for a two queue system with parameters λ = 

3 , γ = 0 . 5 , V 1 = V 2 = 5 , μ1 = 2 , μ2 = 4 , α1 = 6 , α2 = 8 , h 1 = h 2 = 20 , d 1 = 10 , d 2 = 5 . 
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ueue. Finally the last term ensures that all transition rates add

p to �, which is required for uniformization. Transformation op-

rators R i and C i were included to simplify Eq. (4) . These opera-

ors ensure that the correct value function is chosen based on the

easibility conditions. Specifically, R i ensures that upon arrival, the

olunteer may be sent to queue i if that queue has not reached

ts maximum capacity; C i ensures that volunteers complete work

ith rate μi as long as there is work to complete. The transforma-

ion operators are defined below: 

 i J k ( v , d ) = 

{
J k ( v + e i , d ) if v i < V i 

J k ( v , d ) otherwise 

 i J k ( v , d ) = 

{
J k ( v , d − e i ) if d i > 0 

J k ( v , d ) otherwise 

Next, we initialize the value function such that J k ( v,d ) = 0 for

ll ( v,d ) ∈ S, then using the recursive optimality Eq. (4) we ap-

ly the value iteration algorithm until max( J k ( v , d ) − J k −1 ( v , d ) ) -

in( J k ( v , d ) − J k −1 ( v , d )) ≤ ε. For tractability of the value iteration

lgorithm we truncate the state space by limiting d i ≤ D i , where

 i is chosen such that the probability of demand being turned

way due to truncation in steady state is less than a small per-

entage (e.g. 3%). The value iteration algorithm was written and

un in Matlab, on a 3.60 GHz Intel(R) Core(TM) i7-4790 CPU ma-

hine with 16.00 GB of RAM. The run times to convergence were

pproximately 3 min for cases with 10 0,0 0 0 states. The MDP pol-

cy is specified by the volunteer assignment to queue i , which min-

mizes the right hand side of Eq. (4) . We focus on minimizing the

olding cost in the MDP equation as opposed to maximizing re-

ard for completion to avoid scenarios in which a queue becomes

ompletely inundated with demand. This would represent a severe

aterial convergence issue, and would not be considered “optimal”

n real world scenarios. An example of the MDP policy can be seen

n Fig. 2 . When there are two volunteers at queue 1 and three vol-

nteers at queue 2 ( v 1 = 2 , v 2 = 3 ), the next volunteer should be

ssigned to queue 1. The MDP policy reports an infeasible assign-

ent when v 1 = V 1 and v 2 = V 2 . In this case, the volunteer would

ot enter the system. 

The MDP policy generated using the recursive optimality equa-

ion is state dependent and thus is hard to characterize based

olely upon the input parameters of the system. Additionally, im-
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass
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lementing such a complex policy during disaster response is diffi-

ult. Small to mid-size VRCs are often not equipped with technol-

gy capable of assessing the current system and producing com-

lex optimal policies in real time. Instead, we propose the use of

euristic policies, which are easier to implement in practice and

est their performance relative to the MDP policy. 

. Heuristic policies 

In this section we define four policies to compare to the MDP

olicy developed in the previous section. These heuristic policies

ct as alternatives to the MDP policy and are more easily imple-

ented in practice. These policies come from both common sense

ssignment practices and existing literature on queuing models,

ith the caveat that they need to implementable at a reception

enter during disaster response. Accordingly, we define the follow-

ng heuristic policies: 

Fewest Volunteers (FV): An arriving volunteer is assigned to

he queue with the fewest number of volunteers. In the event of

 tie between multiple feasible queues, the volunteer is assigned

o one of the queues randomly with equal probability. This policy

s very attractive for use in disaster relief because it is extremely

asy for a volunteer manager to implement and only requires ba-

ic system knowledge. The FV policy is analogous to the “join the

hortest queue policy” commonly used to minimize the total num-

er of customers in the system at any time. 

Largest Weighted Demand (LWD): An arriving volunteer is as-

igned to the queue with the largest weighted demand from the

ubset of feasible queues which meet the condition v i < V i and re-

ardless of any other system parameters. The weighted demand is

alculated as d i h i . This policy, is similar to a largest demand (LD)

olicy and should also be easy to implement in practice. The bene-

t of LWD over LD is that the volunteer coordinator can impart the

elative importance of each task during volunteer assignment. This

olicy can be thought of simply as trying to “put out the biggest

re first”. 

Largest Queue Clearing Time (LQCT): An arriving volunteer is

ssigned to the queue with the largest weighted queue clearing

ime at the time of assignment. Note that this is not the actual

ueue clearing time for the queue as the number of volunteers is

ynamic and service rates are stochastic. This policy is similar to

he D/V policy evaluated by Mayorga et al. [24] . These types of

olicies are a mix of FV and LWD in that they ensure each task

s staffed (when possible) before balancing for workload. The ex-

ected queue clearing time is calculated as: 

(h i d i ) 

(μi v i + ε) 
(5) 

Best Random (BR): In this case, an arriving server is assigned

o queue i with probability p i , such that 
∑ N 

i =1 p i = 1 . This heuris-

ic is included only as a reference for comparison and is not in-

ended to be implemented in actual disaster response. BR is pro-

ided in place of a true random policy ( p i = 1 /N) and serves as

 tighter performance bound. The optimal thinning probabilities

 i = (p 1 , . . . , p N ) , in terms of resulting long run-average holding

osts, can be found by solving the mathematical program found in

q. (6) . 

in 

N ∑ 

i =1 

φ2 
i 

1 − φi 

h i (6a) 

.t. αi < μi ρi 

⎛ 

⎜ ⎜ ⎝ 

1 −
ρV i 

i 

V i ! ∑ V i 
n =0 

ρn 
i 

n ! 

⎞ 

⎟ ⎟ ⎠ 

for i = 1 , . . . , N (6b)
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Table 1 

Summary of fixed and 2 k factorial design parameters. 

V 1 μ1 h 1 λ γ

5 2.4 20 3.066 0.517 

Case V 2 / V 1 μ2 / μ1 h 2 / h 1 α1 α2 

Low 0.6 0.5 0.5 3 1 

High 2 1.5 3 5 2 

Fig. 3. Box Plot of Average Deviation from MDP policy for each of the four Heuristic 

Policies. Mean values are represented as diamonds. 
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N ∑ 

i =1 

p i = 1 (6c)

p i > 0 for i = 1 , . . . , N (6d)

where ρi = 

λp i 
γ , as defined previously. The queue intensity of each

M/M/1 queue with Markov modulated service rates is represented

here as φi = 

αi 
E[ v i ] μi 

. The objective function, shown in Eq. (6a) min-

imizes the expected weighted holding costs in steady state. Con-

straint (6b) represents the sufficient condition for stability as dis-

cussed in Section 3 . The final constraints ensure that each queue

has a positive weighted probability of volunteer assignment and

that the total weight sums to one. 

5. Simulation model 

In order to compare the heuristic policies defined above to the

MDP policy, a simulation model was developed in Matlab R2017a.

The model simulates a system with two unique queues, but the

framework can easily be generalized to n > 2 queues. The code

is separated into two distinct parts: (1) initialization and (2) main

simulation. Model Initiation creates and assigns a variety of vari-

ables for the case being simulated. These variables include case

specific system parameters, number of replications, warm-up pe-

riod, simulation length, and simulation end time. The MDP optimal

policy is stored in the Matlab Workspace or can also be read in

from a separate file (for example using the xlsread function). Each

run begins in state v = d = 0 , i.e. zero volunteers and zero demand

at all queues. The arrival times for the first volunteer and demand

are sampled from the appropriate distribution. 

The main simulation tracks the time until next action over all

possible actions and continuously compares it to the system time,

t . Possible actions include: volunteer arrival, work arrival, volun-

teer departure, and work completion. The holding cost is updated

at each discrete time jump when a new action is triggered. When

a volunteer arrival action is triggered, the simulation must decide

how the incoming volunteer should be assigned. The heuristic poli-

cies are hard coded into the simulation and the MDP policy is ref-

erenced based on the current system state. Feasibility of the vol-

unteer assignment decision is considered for all heuristics and no

volunteer will be sent to a queue that is at maximum capacity.

As discussed previously, if all queues are at capacity, the volun-

teer does not enter the system. When volunteer arrival or depar-

ture occurs, the time to next work completion must be updated

preemptively, due to the additive service rate. The demand arrival,

demand completion, and volunteer departure actions are modeled

similarly. When an arrival or departure occurs, the respective count

is updated and a new arrival or departure rate is sampled from the

appropriate distribution. 

6. Computational analysis and discussion 

To evaluate the heuristic policies defined in Section 4 , a set of

computational experiments was developed. The goal is to provide

insight into which volunteer assignment policies perform well over

a robust set of scenarios. Experiments were designed for a system

with two queues to more easily compare the relative performance

of each heuristic policy to the MDP policy. A two queue system

can be fully described by ten different system parameters. We set

the arrival and departure of volunteers, λ and γ respectively, based

on real world data collected by Lodree and Davis [6] . The remain-

ing system parameters are varied to create a robust set of system

configurations that cover a broad range of potential real world sce-

narios (high intensity, low server capacity, varied service rates, etc).
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass
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owever, care must be taken when choosing these system parame-

ers. We must ensure that an assignment policy exists which main-

ains system stability, as discussed in Section 3 . 

We fix most parameters of queue 1, as shown in Table 1 , to

void duplicating cases. Next we assign high and low value for

emaining parameters, following a 2 k factorial design ( k = 5 ), re-

ulting in 32 unique cases (referred to as the baseline cases). A

ummary of the fixed and varied parameters is shown in Table 1 .

ll full list of the experimental design parameters can be found in

able A1 . 

Each case and policy was run for 10 0 0 replications in the sim-

lation model. Holding cost was chosen as the primary metric for

valuation in the simulation. Holding cost can be thought of as a

roxy for unmet need, with higher costs assigned to items/tasks

f greater value to beneficiaries. It represents the cost of having

emand sitting at the volunteer site, and not yet given to the ben-

ficiaries. We choose to evaluate average holding cost (AHC) specif-

cally to allow equivalent comparison against the MDP policy, gen-

rated using value iteration. We find that the simulation reaches

teady state performance in 2 model days, with a full run time

f 24 days (representing 2–3 weeks following a disaster). For ease

f comparison, we present percent deviation from the MDP policy.

he percent deviation is defined as, 
 = 

AHC Policy −AHC MDP 

AHC MDP 
. The full

esults of the experimental cases, including: (1) the mean AHC, (2)

ercent deviation, and (3) statistical significance can be found in

he Appendix. A summary of the baseline results is shown in Fig. 3

elow. The box plot represents the variation in percent deviation

rom the MDP policy for all policies across the baseline cases. 

As expected, the MDP policy performs at least 13% better than

ll other policies on average. To further analyze the differences, we

onduct a two sample t -test to compare the sample mean AHC of

ach policy to the MDP policy across all cases. Using a p -value

f 0.05, the MDP policy performs statistically significantly better
igning spontaneous volunteers to relief effort s under uncert ainty 
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Table 2 

Summary of sensitivity analysis conducted (min:max:increment). For example, (2.85:3.95:0.1) in S1 represent that λ

was in discrete increments (2 . 85 , 2 . 95 , . . . , 3 . 85 , 3 . 95) . 

Case λ γ V 1 V 2 μ1 μ2 α1 α2 h 1 h 2 

S1 2.85 : 3.95 : 0.1 0.5 5 5 2 4 6 8 20 20 

S2 2.95 0.5 5 3 : 8 : 1 2 4 6 8 20 20 

S3 2.95 0.5 5 5 2 : 8 : 1 4 6 8 20 20 

S4 3.95 0.5 5 5 2 4 6 2 : 16 : 2 20 20 

S5 2.95 0.5 5 5 2 4 6 8 20 10 : 80 : 10 
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Fig. 4. AHC vs Volunteer Arrival for Case S1. 
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s  
han the FV and BR policy in all 32 cases. There was no statisti-

al difference in sample mean AHC between the MDP policy and

he LWD or LQCT polices in cases 4 and 7. We can also see from

ig. 3 that the LWD and LQCT policies are preferred over FV and

R given a system with stochastic demand tasks. However, it is

ifficult to identify a preferred policy just by evaluating the box

lot. The LQCT policy has a slightly lower median value, but higher

verall variation. A similar statistical analysis was conducted on

he difference in sample mean AHC for LWD - LQCT. A summary

f the numerical results are included in Table A2 , found in the Ap-

endix. In 9 cases, the LQCT policy performs significantly better

han the LWD policy. Out of the remaining 23 policies, LWD out

erforms LQCT in 5 of them. In the following sections, we con-

uct additional analysis to fully evaluate the performance differ-

nces between LWD and LQCT. 

Interestingly, the FV policy performs worse than both the LWD

nd LQCT policies, suggesting that the FV policy is not appropriate

or cases with stochastic demand tasks. This warrants additional

iscussion as it is in contrast to the recommendation of Mayorga

t al. [24] . There are two significant differences between this work

nd Mayorga et al. [24] which contribute to the conflicting results.

irst and foremost is the underlying differences between determin-

stic and stochastic demand tasks. When a queue was cleared in

he deterministic case, all volunteers would leave the system, as

either paper allows for reassignment. Given stochastic demand, it

oes not make sense to have volunteers leave immediately when

he demand is zero, because additional demand may arrive. The

V policy likely performed well in the deterministic case because

t minimized the volunteers lost after task completion. The second

ajor difference between the two papers is the model objective.

ayorga et al. [24] compared “time to completion” as the met-

ic when determining optimality. This metric is inappropriate in

he case with stochastic demand as there is no clear completion

ime for stochastic tasks. Additionally, differences in relative hold-

ng cost were not considered in the previous paper, as tasks were

ssumed to be similar or have the same level of importance. Hold-

ng costs are a significant factor in the assignment decision of the

WD and LQCT policies. 

.1. Sensitivity analysis 

We develop five different sensitivity analysis cases to further

nvestigate the performance differences between the LWD and

QCT policies. Case S1 varies the arrival rate of spontaneous vol-

nteers to determine the impact of varied volunteer arrival rates

n AHC. Cases S2-S5 vary system parameters to create different

ypes of queue imbalances. Cases S2 and S3 vary parameters

n the volunteer side, maximum volunteer capacity and service

ate respectively. The last two cases, S4 and S5, vary demand

ide parameters, namely arrival rate and relative holding cost, to

etermine the impact on AHC within the system. The arrival rate

n case S4 is increased to allow for feasible solutions with higher

emand arrival rates. 

A summary of the fixed and varied parameters

min:max:increment) in each sensitivity case (S1–S5) can be

ound in Table 2 . Results are provided as graphs of the sample
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass
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ean AHC and a 95% half width over the 10 0 0 replications for

ach of policies. Full results for the sensitivity analysis, can be

ound in Table A3 . 

.1.1. Variations in spontaneous volunteer arrival 

It is assumed that in the immediate aftermath of a disaster,

ueues will experience extremely heavy demand and high sponta-

eous volunteer participation. We adjust the overall arrival rate of

olunteers, λ, in Case S1 from moderate to very high and compare

WD and LQCT to the MDP solution. Fig. 4 indicates that LWD and

QCT policies perform well over the majority of the cases within

1. When volunteer arrival rates are very high, LWD and LQCT per-

orm nearly as well as the MDP solution. Table A3 shows that for

ases S1.11 and S1.12, there is no statistically significant difference

etween MDP and LWD or LQCT policies. The LQCT policy does

erform significantly better than LWD for cases S1.8–S1.11, indicat-

ng that it may be more appropriate for use in cases with high vol-

nteer arrival rates. At rates beyond λ= 3.95 (S1.12), there is not a

tatistically significant difference between LWD, LQCT, or the MDP

olicy. If arrival rates are pushed to an extreme (e.g. λ > 20), SV

ositions will “always” be full, and so there is no difference be-

ween any policy (even random assignment). 

As the volunteer arrival rates decrease, the average deviation

rows for all policies. At moderate levels of spontaneous volunteer

rrivals (S1.1-S1.4), all policies perform statistically significantly

orse than the MDP policy. In these situations, volunteer assign-

ent decisions become increasingly important to system perfor-

ance. There is no significant difference between the LWD and

QCT policies in cases with moderate volunteer arrival rates. Over-

ll, the LQCT policy performed significantly better than LWD in 5

f the 12 sub-cases tested. 

.1.2. Queue imbalance caused by spontaneous volunteers 

Next we compare cases with queue imbalances in terms of

pontaneous volunteers (S2 and S3). We first consider variations in
igning spontaneous volunteers to relief effort s under uncert ainty 
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Fig. 5. AHC vs Max Volunteer V 2 for Case S2. 

Fig. 6. AHC vs Volunteer Work Rate μ1 for Case S3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. AHC vs Demand Arrival Rate α2 for Case S4. 
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b  
maximum volunteer capacity ( V i ) of one task. Within Case S2, all

policies perform statistically worse than the MDP policy over all

parameters tested. There is no significant difference in mean AHC

between the LWD and LQCT in any of the sub-cases. We can see

from Fig. 5 that there exists some value of V 2 at which additional

work space does not translate to improved output. Clearly, the as-

signment policy alone is not always enough to take advantage of

the increased floor space. Understanding when this bottleneck oc-

curs is of practical importance for volunteer managers who need to

make decisions on planned facility layout with limited floor space.

Planners should consider volunteer participation levels when de-

veloping floor plans for VRCs. Other options to improve space uti-

lization would be improved volunteer recruitment or initiatives to

reduce departure rate of volunteers. 

Queues with imbalance in volunteer service rates ( αi ) are com-

pared in Case S3. Here, we consider demand tasks with equal rel-

ative importance ( h 1 = h 2 ) but large differences in service rates.

Fig. 6 shows LWD and LQCT performing well across the tested

range, indicating they are fairly robust to changes in service rate.

The LWD policy does not take into account the service rate dif-

ferences directly, and therefore it is expected that the LQCT policy

performs better. The LQCT performs significantly better than the
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass
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WD policy in 2 of the 7 cases. Overall, the LQCT policy is the best

erforming heuristic policy, matching MDP performance in 4 of the

 sub-cases. 

.1.3. Queue imbalances caused by demand tasks 

Next we move to cases with a queue imbalance on the demand

ide (S4 and S5). Case S4 varies the work arrival rate in queue 2

 α2 ) producing a queue imbalance that also indirectly affects sys-

em utilization. As the arrival rate of work in queue 2 increases,

e see a nonlinear increase in holding costs across all policies in

ig. 7 . At higher demand arrival rates, all policies perform poorly

hen compared to the MDP policy. In fact, all policies perform

ignificantly worse than the MDP policy in all but one sub-case

S4.4). It is important to note that the LWD policy is the worst

erforming heuristic for cases with extremely imbalanced demand

ates. In cases with extremely imbalanced queues, volunteer man-

gers must exercise caution to ensure that volunteers are not all

ssigned to one task. For example, at high demand arrival rates,

he LWD policy reacts by sending all volunteers to queue 2, effec-

ively ignoring queue 1 for periods of time. The LQCT policy is less

ffected by this phenomenon due to the volunteer count compo-

ent within the heuristic. There is no significant difference in the

WD and LQCT policy in 7 of the 8 sub-cases. However, the LQCT

olicy is more robust to large differences in demand arrival rates. 

Finally, in case S5 we consider the scenario in which the rela-

ive importance of one task is very different in to another. For ex-

mple, consider a case in which a relief organization is providing

ood/water to beneficiaries and also sorting incoming donations at

 warehouse. The immediate importance of getting the food/water

o beneficiaries likely outweighs the need to sort donations. For

ases where the importance is relatively similar (1.2x) LWD and

QCT perform similarly. Fig. 8 identifies a critical point around

 2 = 1 . 5 h 1 where the trends change. The performance of LWD and

QCT diverges significantly to the right of this point. LQCT begins

o approach the performance level of FV in cases with a large im-

alances in relative importance. This is the only sensitivity case in

hich LWD performed statistically significantly better than LQCT

5 of 8 sub-cases). When extreme differences exist in task impor-

ance, LWD is the preferred heuristic assignment strategy. 

.2. Policy recommendation 

From the 32 original cases, there is little discernible difference

etween the LWD and LQCT policies. The LWD policy has a slightly
igning spontaneous volunteers to relief effort s under uncert ainty 
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Fig. 8. AHC vs Holding cost h 2 for Case S5. 

l  

w  

t  

5  

t  

f  

t  

h  

h

 

t  

t  

a  

t  

d  

i  

t  

s  

F  

F  

t  

p  

a

 

j  

t  

c  

h  

i  

i  

v  

i  

w  

f

7

 

c

7

 

v  

p  

r  

s  

p  

m  

M  

t  

c  

c  

d  

t  

p  

Q  

c

 

t  

o  

t  

p  

i  

s  

c  

l  

p  

i  

c

 

u  

p  

m  

l  

s  

t  

t  

t  

l  

s  

f  

s  

s  

p

7

 

a  

t  

a  

i  

c  

a  

n  

s  

c  

m  

u

 

t  

p  

l  

w  

a  

b  

l  

v

ower mean average deviation (13.2 vs 13.3) and tighter variance

hen compared to LQCT. However, the LQCT policy is more robust

han the LWD policy, as shown by out performing LWD in 3 of the

 sensitivity cases (S1, S3, S4). However, in cases with high spon-

aneous volunteer arrival rates (S1.12), there is no significant dif-

erence between the LWD and LQCT policy. One major drawback

o the LQCT policy is that it does not handle large differences in

olding costs between demand tasks. In cases with a high ratio of

 2 / h 1 , LWD is clearly the best performing policy. 

We must also consider difficulty of implementation when de-

ermining a policy recommendation. The FV policy is most attrac-

ive in volunteer management due to the ease of implementation

nd requiring limited system information. The LWD policy, an ex-

ension of the Largest Demand policy, requires the volunteer coor-

inators to keep track of demand and place value on the relative

mportance of each task. The LQCT policy requires complete sys-

em knowledge, which may be unknown during early disaster re-

ponse effort s. In comparison to all other heuristic policies tested,

V requires the least amount of system knowledge. However, the

V policy is not robust, and performs poorly in a variety of sys-

em configurations. As shown in Fig. 3 , the FV policy is the worst

erforming on average and has an extremely large variance in AHC

cross all cases. 

Although LQCT performs slightly better than LWD over the ma-

ority of cases tested, it has two major drawbacks: (1) implementa-

ion difficulty and (2) performance in systems with a large holding

ost differences. It is expected that volunteer coordinators may not

ave full system knowledge immediately following a disaster mak-

ng LQCT difficult to implement. Throughout the disaster response,

t is expected that tasks with largely different priorities require

olunteers. For cases with a large difference between priority rat-

ngs, LWD should be used over LQCT to minimize AHC. Therefore

e recommend the use of the LWD volunteer assignment policy

or disaster response tasks with stochastic demand. 

. Conclusions 

In this section we summarize the results of the paper and dis-

uss future work related to spontaneous volunteer assignment. 

.1. Summary 

This paper modeled spontaneous volunteer assignment at a

olunteer reception center (VRC) in a post disaster setting. The
Please cite this article as: K.E. Paret, M.E. Mayorga and E.J. Lodree, Ass

in task demand and volunteer availability, Omega, https://doi.org/10.10
roblem was formulated as a queuing model with stochastic ar-

ival of demand, stochastic arrival and departure of volunteers, and

tochastic and additive service rates. This is an expansion upon the

revious work by Mayorga et al. [24] and allows for stochastic de-

and. The queuing system was formulated as a continuous time

DP and transformed to a discrete time MDP using uniformiza-

ion. Solving the MDP using value iteration provided an optimal

ontrol policy. It was shown that the optimal policy is extremely

omplex and not suited for use in a disaster relief operation. Three

ifferent heuristic policies were introduced as implementable al-

ernatives to the optimal MDP policy: (1) the Fewest Volunteer

olicy, (2) the Largest Weighted Demand policy, (3) the Largest

ueue Clearing Time policy. A fourth policy, Best Random was in-

luded as a reference. 

In order to test the performance of these heuristics compared

o the MDP policy, a discrete event simulation model was devel-

ped in Matlab. A set of thirty two experiments were designed

o test the robustness of each heuristic policy. Although the FV

olicy is easy to implement, it was found to not perform well

n cases with stochastic demand. This is in contrast to the re-

ults found by Mayorga et al. [24] , which recommended FV in

ases with deterministic demand. A short discussion of the under-

ying differences between the two papers was included for com-

leteness. On average the LWD and LQCT policies performed well

n relation to the MDP policy when minimizing average holding

ost. 

Additional sensitivity analysis was conducted to further eval-

ate the effectiveness of LWD and LQCT. Again, both policies

erform well, with LQCT performing better than LWD in the

ajority of cases tested. The exception to this was cases with

arge imbalances in relative holding costs, where LWD performed

tatistically significantly better than LQCT. Ease of implementa-

ion and usability was also discussed. The policy recommenda-

ion for volunteer assignment given tasks that exhibit stochas-

ic demand is to use the LWD policy. While there are chal-

enges with implementing any routing policy in a post disaster re-

ponse, the results show that value can be gained from planning

or spontaneous volunteers and choosing appropriate assignment

tategies. Volunteer organizations that are able to better manage

pontaneous volunteers will be better able to serve the affected

opulation. 

.2. Limitations and future work 

There are a few important limitations due to the formulation

pproach and model assumptions that should be discussed. With

he Markov assumption, we cannot track volunteers day to day

nd therefore are unable to account for any individual task learn-

ng that may improve the service rate. We assume that tasks

hange frequently, dependent on the needs of the organizations,

nd therefore the benefit of learning is minimal. Similarly, we ig-

ore volunteer training because we cannot track training across

eparate visits under the Markov assumptions. It is possible to in-

lude a training element within the model, through the develop-

ent of additional states, but retraining would occur for each vol-

nteer. 

Future work includes efforts to add more realism to the spon-

aneous volunteer assignment model. We would like to incor-

orate volunteer preference in the model in two ways. (1) Al-

ow for multiple classes of volunteers who are only able to

ork or prefer a subset of available tasks. (2) Incorporate vari-

ble volunteer departure rates based on task preference or num-

er of other volunteers throughout the system. Finally, we would

ike to further relax the model to allow for reassignment of

olunteers. 
igning spontaneous volunteers to relief effort s under uncert ainty 
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Table A1 

Input parameters for each of the 2 k baseline cases. 

Case λ γ V 1 V 2 μ1 μ2 α1 α2 h 1 h 2 

1 3.066 0.517 5 3 2.4 1.2 3 1 20 10 

2 3.066 0.517 5 3 2.4 1.2 3 1 20 60 

3 3.066 0.517 5 3 2.4 1.2 3 2 20 10 

4 3.066 0.517 5 3 2.4 1.2 3 2 20 60 

5 3.066 0.517 5 3 2.4 1.2 5 1 20 10 

6 3.066 0.517 5 3 2.4 1.2 5 1 20 60 

7 3.066 0.517 5 3 2.4 1.2 5 2 20 10 

8 3.066 0.517 5 3 2.4 1.2 5 2 20 60 

9 3.066 0.517 5 3 2.4 3.6 3 1 20 10 

10 3.066 0.517 5 3 2.4 3.6 3 1 20 60 

11 3.066 0.517 5 3 2.4 3.6 3 2 20 10 

12 3.066 0.517 5 3 2.4 3.6 3 2 20 60 

13 3.066 0.517 5 3 2.4 3.6 5 1 20 10 

14 3.066 0.517 5 3 2.4 3.6 5 1 20 60 

15 3.066 0.517 5 3 2.4 3.6 5 2 20 10 

16 3.066 0.517 5 3 2.4 3.6 5 2 20 60 

17 3.066 0.517 5 8 2.4 1.2 3 1 20 10 

18 3.066 0.517 5 8 2.4 1.2 3 1 20 60 

19 3.066 0.517 5 8 2.4 1.2 3 2 20 10 

20 3.066 0.517 5 8 2.4 1.2 3 2 20 60 

21 3.066 0.517 5 8 2.4 1.2 5 1 20 10 

22 3.066 0.517 5 8 2.4 1.2 5 1 20 60 

23 3.066 0.517 5 8 2.4 1.2 5 2 20 10 

24 3.066 0.517 5 8 2.4 1.2 5 2 20 60 

25 3.066 0.517 5 8 2.4 3.6 3 1 20 10 

26 3.066 0.517 5 8 2.4 3.6 3 1 20 60 

27 3.066 0.517 5 8 2.4 3.6 3 2 20 10 

28 3.066 0.517 5 8 2.4 3.6 3 2 20 60 

29 3.066 0.517 5 8 2.4 3.6 5 1 20 10 

30 3.066 0.517 5 8 2.4 3.6 5 1 20 60 

31 3.066 0.517 5 8 2.4 3.6 5 2 20 10 

32 3.066 0.517 5 8 2.4 3.6 5 2 20 60 

Table A2 

Computational results of the 2 k factorial base cases. 

Mean Holding Cost per Day Average Deviation from MDP 

Case MDP LWD FV LQCT BR LWD-LQCT LWD FV LQCT BR 

Baseline 1 24.4 26.1 31.5 26.2 31.6 -0.1 6.8% 28.7% 7.4% 29.3% 

2 60.5 61.4 65.1 61.4 80.7 0.0 1.5% 7.5% 1.5% 33.4% 

3 52.8 55.1 58.5 52.8 76.6 2.3 4.3% 10.8% 0.0% 45.1% 

4 181.8 178.5 222.9 189.9 317.0 −11.4 −1.8% 22.6% 4.4% 74.3% 

5 52.7 55.4 110.3 61.6 68.3 −6.2 5.2% 109.3% 16.9% 29.7% 

6 103.7 107.3 144.9 109.7 137.4 −2.4 3.4% 39.7% 5.7% 32.5% 

7 103.1 110.9 134.9 109.4 140.4 1.5 7.6% 30.9% 6.1% 36.2% 

8 270.9 275.8 295.5 264.4 420.8 11.5 1.8% 9.1% −2.4% 55.3% 

9 17.0 19.7 27.5 20.0 20.7 −0.3 15.7% 61.7% 17.4% 21.6% 

10 29.5 31.9 36.4 30.8 41.4 1.1 7.9% 23.2% 4.1% 40.0% 

11 22.6 23.5 29.3 24.4 28.9 −0.9 4.3% 30.0% 8.1% 28.3% 

12 46.9 48.6 51.0 47.6 68.8 1.0 3.6% 8.9% 1.6% 46.9% 

13 39.8 45.6 104.9 47.5 49.5 −2.0 14.5% 163.6% 19.4% 24.3% 

14 59.5 63.9 113.9 63.9 78.2 0.0 7.5% 91.6% 7.5% 31.5% 

15 48.9 54.1 108.3 55.1 61.0 −0.9 10.8% 121.6% 12.7% 24.8% 

16 85.5 91.6 130.2 87.7 121.8 3.9 7.1% 52.3% 2.5% 42.4% 

17 22.9 28.6 30.8 29.0 34.7 −0.4 25.0% 34.4% 26.7% 51.5% 

18 50.7 57.8 57.6 54.8 76.8 3.0 13.9% 13.5% 8.0% 51.4% 

19 38.7 44.7 46.6 43.6 67.2 1.1 15.5% 20.5% 12.7% 73.9% 

20 108.4 116.6 152.5 111.2 171.2 5.4 7.6% 40.7% 2.6% 57.9% 

21 47.9 57.3 122.4 64.4 73.9 −7.1 19.6% 155.6% 34.5% 54.4% 

22 91.6 105.1 149.6 103.0 142.4 2.1 14.7% 63.2% 12.4% 55.3% 

23 80.3 89.4 126.1 95.1 141.1 −5.7 11.3% 57.0% 18.3% 75.6% 

24 194.7 218.1 225.2 206.1 307.3 12.0 12.0% 15.7% 5.8% 57.9% 

25 16.5 23.5 27.1 24.0 20.7 −0.5 42.2% 64.0% 45.5% 25.1% 

26 27.4 33.2 34.5 32.0 39.4 1.3 21.4% 26.0% 16.8% 44.0% 

27 21.0 27.4 28.8 27.0 28.7 0.4 30.5% 37.4% 28.5% 36.6% 

28 41.8 47.2 46.3 45.0 63.7 2.2 12.8% 10.8% 7.5% 52.3% 

29 38.8 49.9 110.3 53.9 49.0 −4.1 28.5% 184.1% 38.9% 26.3% 

30 55.3 68.0 117.6 65.3 74.8 2.7 23.0% 112.4% 18.0% 35.1% 

31 47.0 57.8 117.6 57.9 62.8 −0.1 23.0% 150.0% 23.1% 33.4% 

32 77.3 92.6 135.0 86.2 120.4 6.4 19.7% 74.6% 11.5% 55.7% 
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Table A3 

Computational results of the Sensitivity Cases. 

Mean Holding Cost per Day Average Deviation from MDP 

Case MDP LWD FV LQCT BR LWD-LQCT LWD FV LQCT BR 

S1: Vary 

Arrival Rate, λ

S1.1 476.3 591.3 636.8 568.9 619.6 22.4 24.1% 33.7% 19.4% 30.1% 

S1.2 420.7 513.4 595.7 497.3 547.3 16.1 22.0% 41.6% 18.2% 30.1% 

S1.3 380.3 451.4 534.2 428.4 496.7 23.0 18.7% 40.5% 12.6% 30.6% 

S1.4 338.0 392.1 489.2 389.5 463.1 2.6 16.0% 44.7% 15.2% 37.0% 

S1.5 310.3 356.3 462.5 322.1 412.3 34.2 14.8% 49.0% 3.8% 32.8% 

S1.6 276.7 305.8 411.7 301.2 376.3 4.6 10.5% 48.8% 8.9% 36.0% 

S1.7 257.0 265.8 354.7 262.1 344.7 3.7 3.4% 38.0% 2.0% 34.1% 

S1.8 226.2 259.5 333.4 237.8 310.6 21.7 14.7% 47.4% 5.1% 37.3% 

S1.9 213.7 228.0 298.1 210.5 286.4 17.5 6.7% 39.5% −1.5% 34.0% 

S1.10 188.3 207.3 271.3 187.6 258.5 19.7 10.1% 44.1% −0.3% 37.3% 

S1.11 178.3 185.4 250.2 175.7 234.3 9.6 3.9% 40.3% −1.5% 31.3% 

S1.12 163.0 170.1 225.3 168.7 210.0 1.4 4.3% 38.2% 3.5% 28.8% 

S2: Vary V 2 S2.1 545.2 644.3 611.5 644.2 715.1 0.1 18.2% 12.2% 18.2% 31.1% 

S2.2 450.0 531.0 585.7 524.6 572.6 6.4 18.0% 30.1% 16.6% 27.2% 

S2.3 420.7 513.4 595.7 497.3 554.8 16.1 22.0% 41.6% 18.2% 31.9% 

S2.4 415.9 505.6 577.8 481.4 550.5 24.2 21.6% 38.9% 15.8% 32.4% 

S2.5 412.5 505.3 560.7 496.4 566.1 8.9 22.5% 35.9% 20.3% 37.2% 

S2.6 408.1 493.5 562.6 469.7 565.5 23.8 20.9% 37.9% 15.1% 38.6% 

S3: Vary μ1 S3.1 420.7 513.4 595.7 497.3 547.3 16.1 22.0% 41.6% 18.2% 30.1% 

S3.2 202.0 213.1 224.5 209.4 298.1 3.7 5.5% 11.1% 3.7% 47.6% 

S3.3 139.7 146.2 167.7 140.4 209.7 5.8 4.6% 20.0% 0.5% 50.1% 

S3.4 112.1 121.3 145.4 114.4 179.0 6.9 8.2% 29.6% 2.0% 59.6% 

S3.5 94.1 102.7 145.1 93.8 148.8 8.9 9.1% 54.1% −0.3% 58.1% 

S3.6 83.1 90.1 136.5 89.7 133.7 0.5 8.5% 64.3% 7.9% 60.9% 

S3.7 76.1 87.1 132.9 82.8 124.3 4.4 14.5% 74.6% 8.7% 63.4% 

S4: Vary α2 S4.1 71.9 79.8 184.1 78.0 91.6 1.8 11.0% 156.1% 8.6% 27.4% 

S4.2 91.5 98.6 187.8 98.6 112.1 0.0 7.8% 105.2% 7.7% 22.4% 

S4.3 118.4 125.9 208.0 123.6 156.2 2.3 6.4% 75.8% 4.4% 32.0% 

S4.4 163.0 170.1 225.3 168.7 208.2 1.4 4.3% 38.2% 3.5% 27.7% 

S4.5 227.0 244.6 276.6 244.0 297.5 0.7 7.8% 21.9% 7.5% 31.1% 

S4.6 323.8 356.8 398.6 353.0 415.1 3.8 10.2% 23.1% 9.0% 28.2% 

S4.7 462.0 550.0 583.9 528.9 592.5 21.1 19.0% 26.4% 14.5% 28.3% 

S4.8 611.1 797.1 764.0 730.4 774.5 66.8 30.4% 25.0% 19.5% 26.7% 

S5: Vary h 2 S5.1 285.2 344.8 534.3 355.8 427.7 −11.1 20.9% 87.3% 24.7% 49.9% 

S5.2 420.7 513.4 595.7 497.3 554.8 16.1 22.0% 41.6% 18.2% 31.9% 

S5.3 491.4 575.1 657.1 593.0 680.7 −17.9 17.0% 33.7% 20.7% 38.5% 

S5.4 542.0 624.4 718.5 675.5 791.9 −51.1 15.2% 32.6% 24.6% 46.1% 

S5.5 573.9 657.9 779.9 713.9 908.6 −56.0 14.6% 35.9% 24.4% 58.3% 

S5.6 613.4 708.1 841.3 782.8 1028.7 −74.7 15.4% 37.1% 27.6% 67.7% 

S5.7 646.5 746.2 902.6 829.4 1133.6 −83.1 15.4% 39.6% 28.3% 75.3% 

S5.8 687.4 782.2 964.0 883.8 1299.7 −101.6 13.8% 40.2% 28.6% 89.1% 
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ppendix A. Full computational results 

The Tables in Appendix A provide the full results of the compu-

ational experiments. Results are shown for all policies (e.g. Fewest

olunteer, Largest Weighted Demand, Largest Queue Clearing Time,

arkov Decision Process, and Best Random) over all cases. Table

1 summarizes the system parameters for each of the baseline

ases. Tables A2 and A3 include the sample mean AHC from 10 0 0

imulated replications for each policy. The difference in mean AHC

etween LWD and LQCT and percent deviation from the MDP pol-

cy are also included for ease of comparison. Bolded values indicate

 statistically significant difference ( p < 0.05) in sample mean

HC between MDP and all other policies. Similarly, the difference

etween LWD and LQCT is bolded if the difference is statistically

ignificant. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.omega.2020.102228 . 
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